CLOAK: Computer Learning for Obfuscating Automobile
Knowledge

Sean Chen

Northwestern University
seanchen2024@u.northwestern.edu

Bill Yin
Northwestern University
billyin2024@u.northwestern.edu

Ryan Newkirk

Northwestern University
ryannewkirk2024@u.northwestern.edu  jeffreywu2024@u.northwestern.edu

Jeffrey Wu

Northwestern University

Daniel Zhao

Northwestern University

danielzhao2024@u.northwestern.edu

Figure 1: Obfuscated image of a car’s license plate with CLOAK

ABSTRACT

As photography becomes easier to access and social media becomes
more popular, sharing images has become effortless. Consequently,
many street-level photos now openly reveal vehicle license plates,
carrying unique personal information. Through use of easily acces-
sible online tools, these license plates can be used to easily discover
the plate owner’s identity and location. As digital image sharing
becomes increasingly prevalent, it’s become increasingly impor-
tant to protect the privacy of people, and preventing unauthorized
access to personal license plate information would greatly assist in
the protection of privacy. To address these issues, we’ve developed
a tool to automatically detect license plates in an image and apply
an appropriate amount of blur to the license plate to protect the
drivers’ privacy while maintaining image utility. This preserves the
image’s quality while also concealing any potentially identifying
information.

1 INTRODUCTION

In recent years, the barrier to taking photographs has fallen signifi-
cantly as high quality digital cameras, in the form of smartphones,
are being considered a daily necessity by billions. Additionally, the
ability to share these high resolution images online with millions
of viewers has become largely trivial, with billions of photos being
uploaded online each day. As the prevalence of online photography
increases, as well as high-speed access to the internet, it’s become
increasingly important to maintain the privacy of the subjects of
photography. While it may be considered the responsibility of the

uploader to make sure their photo maintains the privacy of its sub-
jects, many users fail to consider privacy in their social media posts.
Therefore, the responsibility to maintain the privacy of people in-
volved in a photograph may fall onto the services where photos
are uploaded.

Of the photos being uploaded, a number of them are street side
photos. Being street side, there is a high likelihood that a car may
be captured containing personally identifiable information from
the license plate. This presents a potential privacy risk, as there are
many easily accessible online tools which can be used to lookup a
license plate’s information, which would leak information about the
driver and owner. Additionally, license plates can be re-identified
to track the vehicle’s position over time, which also presents a
significant privacy risk [1].

Therefore, our plan was to develop a tool that can take an up-
loaded image and hide the license plate, maintaining the privacy of
the user. In doing so, we aimed to align our tool with the principles
of usable security, particularly by implementing license plate obfus-
cation methods that minimize user effort in safeguarding private
data within their own images [2].

However, it’s also important to maintain the utility of the image.
While a fully censored and blurred image would be private for the
subjects of the photo, it’s obviously unusable. Therefore, we wish
to maintain as much of the structure of the image as possible with
minor visual artifacts. This leads us to the goal of ensuring that the
license plates are illegible, while maintaining the quality of the im-
age by not altering the image’s license plate too greatly. Therefore,



we wish to maximize the amount of privacy, while minimizing the
level of utility loss in the image.

1.1 Research Goals
Our main research goals for this software are:

(1) Obfuscate license plates

(2) Maximize driver privacy

(3) Maintain image utility

In short, the solution we develop should be capable of automati-

cally detecting license plates, and obfuscating them to a satisfactory
degree. The obfuscated license plate should be recognizable as a
license plate, but should be unreadable to both automatic systems
and human readers. This should be accomplished while maintaining
the overall image’s quality.

1.2 Background and Related Works

Much research has been done on approaching personal privacy
preservation from the context of surveillance [3-5], and research
specifically in license plate de-identification began during the emer-
gence of convolutional neural networks (CNNs). Ling et al. (2011)
explore the principle of using inhomogeneous principal component
blur (IPCB) to preserve license plate privacy, and it stands out in
its adaptive approach of blurring pixels such that there is minimal
damage to image quality and utility [6]. This work provided a foun-
dation for subsequent advancements in blurring technology and
introduced the importance of balancing privacy protection with
image quality preservation.

In subsequent years, researchers have leveraged image obfus-
cation to enhance privacy with new deep learning approaches.
One important shift is in object detection, allowing for real-time
detection of objects in images. Research by Redmon et al. (2016) in-
troduced the You Only Look Once (YOLO) model as a convolutional
neural network based model that can process images in a single
pass. This faster and more accurate method of identifying objects
could lead to better object detection methods, and development on
this technology has continued to push state of the art benchmarks
in object detection as one of the fastest and most accurate object
detection models [7].

In recent years, significant research has been devoted to the
identification of license plate information [8, 9] and even the de-
anonymization of blurred images using artificial neural networks
[10]. Following these advancements, many services have emerged
specifically for people to find license plate data, such as online
look-up services like FaxVin and FindByPlate. Part of the goal of
our work is to address the recent gaps in privacy tools and research
surrounding license plate privacy. We also aim to develop new
methodologies of protecting the privacy of vehicles and drivers
while taking advantage of new machine learning methods.

2 DATASET AND METHODOLOGY

2.1 Dataset

The dataset used is the Car License Plate Detection dataset hosted
on Kaggle 1. This dataset contains 433 images with bounding box

!https://www.kaggle.com/datasets/andrewmvd/car-plate-detection
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Figure 2: PASCAL VOC format xml

annotations of the car license plates within the image. Annotations
are provided in the PASCAL VOC format (Figure 2).

2.2 Models Used

2.2.1  Convolutional Neural Network (CNN) Model. As part of an
early effort to develop this tool with customized models, a classifi-
cation CNN model was attempted to recognize license plates in an
image.

The early model consisted of the following layers, which did not
yield a desirable and usable model.

# Create CNN model
class ConvNeuralNet(nn.Module):
def __init__(self):
super(ConvNeuralNet, self).__init__()
self.convl = nn.Conv2d(in_channels=3,
out_channels=16, kernel_size=3, stride=1,
padding=1)
self.conv2 = nn.Conv2d(in_channels=16,
out_channels=32, kernel_size=3, stride=1,
padding=1)

self.fcl = nn.Linear(in_features=32 * 150 * 150,
out_features=200)
self.fc2 = nn.Linear (200, 4)

def forward(self,x):
x = F.max_pool2d(F.relu(self.convi(x)), (2, 2))
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x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
x = torch.flatten(x, 1)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return x

The primary issue with this approach was the model that we con-
structed was structured for classification tasks and not for object
recognition tasks, which caused the loss of the model to be anoma-
lous. After some experimentation, this idea was discarded and re-
placed with pre-trained models.

2.2.2  PyTesseract Model. In order to extract text from the pro-
cessed license plates, the Pytesseract library from Python was used.
Pytesseract was used as part of the pipeline to evaluate the success
of blurring on the extracted license plate images, specifically to
assess if the images still contained machine recognizable text.

For this tool, the following configuration was used.

# Use Tesseract OCR to extract text
text = pytesseract.image_to_string(gray, config='--psm
7 --oem 1")

When initializing Pytesseract, the detailed configuration in the con-
fig parameter was selected to extract the most amount of characters
within our license plates. The procedure consisted of optimization
through trial and error.

2.2.3 YOLOv5 Model. As another license plate detection method,
a pre-trained model called YOLOv5 [7], developed by keremberke,
was used to computationally extract the location of license plates.
The parameters used were slightly adjusted from the default param-
eters specified in their HuggingFace model documentation to only
allow a maximum of 1 detection per image. This allows the current
tool to focus on a single license plate in an image, but this could be
extended to detect multiple license plates in future developments.

# set model parameters

model.conf = @.4 # NMS confidence threshold

model.iou = 0.45 # NMS IoU threshold

model.agnostic = False # NMS class-agnostic
model.multi_label = False # NMS multiple labels per box
model.max_det = 1 # maximum number of detections per image

2.3 Tool Procedure and Implementation

The tool we developed has 5 major steps in its procedure after a
user inputs an image:

(1) Identify the bounding box of a license plate with a license
plate detection model
(2) Crop out the license plate with the identified bounding box
(3) Apply levels of Gaussian blurring to the cropped license
plate image
(4) Determine optimal blur level with a text recognition model
(5) Insert the optimally blurred license plate back into the orig-
inal image
To identify the bounding box of a license plate in the inputted
image, we utilize the pre-trained YOLOVS5 license plate detection
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Figure 3: YOLOv5 model bounding box of license plate
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Figure 4: Cropped license plate from original car image

model. The outputted bounding box from this model provides the
x_min, y_min, x_max, and y_max values of the image section that
appears to be a license plate (Figure 3). Using the bounding box of
the license plates, the tool extracts the cropped image of the license
plate (Figure 4).

After retrieving the cropped license plate image, various levels
of Gaussian blurring is applied to this image (Figure 5). The choice
of Gaussian blurring is because it is a common and effective image
blurring technique that can’t be stably reversed according to Hum-
mel et al. (1986) [11]. In the experiments, 10 Gaussian blur levels
were applied to each image where blur level 0 is the most amount
of blurring and blur level 9 is no blurring. To create each blur level,
the kernel size of the Gaussian blurring method was varied. The
calculation of the blur levels is shown below:

w b

where W is the pixel width of the cropped license plate image, b is
the blur level, and B is the total number of blur levels. B = 10 is used
for the 10 blur levels. Additionally, since the PyTorch gaussian_blur
method only accepts odd values for the kernel dimensions (so there

kernel_size_unrounded =

is a single center pixel), the value of % * (1 - %) is rounded

up to the next odd number. This means the kernel width will be
incremented by 1 if it is even or remain the same if it is already
odd.

Given the kernel size equation above, a size of 5 pixels is used for
the kernel height. Meanwhile, the kernel width will vary between 0
(when b =B —1)and % (when b = 0). The equation also indicates
that kernel width decreases in equal increments of % as the
blur level increases (decreasing blur).

Once the various levels of Gaussian blurring are applied to the
cropped license plate images, these images are inputted into the
pre-trained PyTesseract text recognition model. Starting from the
image with the most blur applied (b = 0), the images are inputted


https://pypi.org/project/pytesseract/

Figure 5: Amounts of Gaussian blur applied to license plate
(blur levels 5 to 9 from top to bottom)

Figure 6: Final obfuscated image with blur level 5

into the PyTesseract model and the identified text is outputted.
From here, there are 4 possible cases.

Case 1: If this model can only identify 1 or fewer alphanumeric
characters in the image, the next image with less blurring (blur
level incremented by 1) is attempted.

Case 2: If the model can identify 2 or more alphanumeric char-
acters in the image, the tool stops attempting images with less blur.
Instead, the tool selects the previously attempted blurred license
plate image (blur level decremented by 1) since it was the last image
where only 1 or fewer alphanumeric characters could be identified.

Case 3: If the model is immediately able to identify 2 or more
alphanumeric characters at a blur level of 0 (maximum blur), then
a blur level of 0 is selected.

Case 4: If the model still identifies 1 or fewer alphanumeric
characters after reaching the image with a blur level of 9 (no blur),
then the model selects the image with a blur level of 0 (maximum
blur). The likely cause of this case is from a license plate image that
is already very difficult to read or the text is oriented in a way that
is difficult for the PyTesseract model to identify characters (e.g. text
is slanted at odd angles that the PyTesseract model isn’t trained to
read). This means that the text could be either very difficult to read
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for people and the model, or the text could be very easy to read for
people and difficult to read for the model. Since the tool wouldn’t
know which situation has occurred, we chose to have the model
apply the maximum amount of blur. This decision ensures that user
privacy is always protected and that utility is optimized whenever
possible.

In these experiments, a threshold of 1 identified alphanumeric
character was defined because license plates generally have more
than 1 alphanumeric characters. However, this threshold could be
modified in future experimentation to vary the balance between
image privacy and image utility.

Finally, the selected blurred license plate image is inserted back
into the original image and the tool outputs the updated image
(Figure 6).

2.4 Technologies Used

To implement our methodology, we utilized Python libraries and
models such as Pytorch, CV2, YOLOvV5, and PyTesseract.

3 EVALUATION, EXPERIMENTS, RESULTS

3.1 Evaluation and Experiments

To evaluate tool efficacy, we conducted an experiment on a ran-
dom sample of 50 car images from the Car License Plate Detection
dataset. In this experiment, we inputted the 50 images into the tool
and recorded the resulting blur levels used for each image. These
blur levels were then plotted on a histogram to show the distribu-
tion of blur levels used from 0 through 9. Additionally, the average
blur level across the sample of car images was calculated. With this
distribution and average, we can assess how well the tool varies its
blur level for different images.

For the tool to consider an image sufficiently blurred, the image
must be illegible to the text recognition model, which is defined as
only being capable of identifying 1 or fewer alphanumeric charac-
ters. More details about the methodology and blur level calculation
can be found in the Tool Procedure and Implementation section
above.

3.2 Results

From the experiment on 50 sample images, the average the blur
level was 3.02. However, as seen in Figure 7, it is a bimodal distribu-
tion of the blur levels, one centered around 0 (strongest blur) and
one centered around 6 (medium blur). It’s reasonable to expect all
images to require degree of blurring, as each image in the sample
set contains a detectable license plate. Therefore, the overall mean
of the experiment is not unexpected. However, the bimodal distri-
bution was unexpected, and may be evidence for a discrepancy in
the blurring levels required by different images of license plates.
Images with a more obscure license plate that is not directly
facing the camera may require less blurring as they are inherently
harder to identify and read from, while those that are more con-
spicuous are likely to need more. Therefore we believe that level of
blurring is not a universal value but rather context-dependent.
Examples of the tool’s blur results can be seen in Figure 8.
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Histogram of Blur Levels (50 Samples)
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Figure 7: Blur level distribution

Figure 8: Original image input (left) and resulting blurred
image output (right) of tool

4 DISCUSSION

4.1 Implications and Uses

With billions of images and thousands of hours of videos [12] of
the world around us shared daily, the need for privacy rises for the
many sources of possible personal information. Our license plate
privatization process is invaluable in many domains, especially in
the context of images captured outdoors on roads or streets. The
versatility extends to automating the removal of license plates in
publicly released images and videos shared by law enforcement,
news, and journalists, as well as protecting privacy of vehicles and
people on social media posts. This tool also allows images captured
in public spaces to preserve the visual utility and aesthetic essence
sought by the photographer while safeguarding the privacy of any
vehicle information incidentally present in the images.

The YOLOv5 model’s real-time object detection capabilities means
the same process of image obfuscation we’ve created can be used
in real-time applications as well. For example, it can facilitate the
real-time monitoring of traffic and surveillance to aid in efficient

traffic management/analysis without compromising individual pri-
vacy or protect the privacy of vehicle/location information in live
streams.

Our technology can also be adapted to different domains. While
the process focuses on car license plate detection, there are many
other sources of sensitive information that can appear in images.
This includes street signs and address plaques, which can leak in-
formation of the photographer’s location as well as draw unwanted
eyes on the people who might live in the background.

4.2 Challenges

At the start of our project we attempted to create our own CNN
model to recognize license plates from photos. However, we saw
two large issues: the images in the dataset were not uniform shape
and the core of our method is not classification. We needed the
model to perform object detection rather than image classification,
which was an area we were not familiar with.

We solved the uniform shape issue by manually padding the
images with black borders to the right and bottom of our images.
This would allow us to maintain the same x and y values for the
borders given in the dataset, as well as not modifying the image in
any way (it is trivial to crop out the borders after finishing). After
consulting with our peer mentor about our challenges, we agreed
that this was a good method to standardize image sizes.

Our peer mentor also suggested the use of a pre-trained model
to detect and locate the license plate. As we were already looking
into pre-trained models, such as YOLOv5, we agreed that using it
would be best. Together, we developed the idea to put the license
plates back into a license plate or text recognition model in order
to evaluate the quality of the privatization. This inspired us to
make the varied Gaussian blur levels (Figure 5) and bring in a text
recognition model to evaluate them.

4.3 Limitations

The final model has a few key limitations. We focused on just
picking out one license plate from the image and privatizing that.
The one license plate would be the highest value detected by YOLO.
However, this means that in a picture with multiple license plates,
only one will be blurred. This can be adjusted by the YOLOv5 model
parameters and a few modifications to the current tool.

Also, the model struggles with slanted license plates. This is due
to the usage of text recognition to judge how blurred the image
should be. The text recognition model often fails to identify text
from slanted or sideways images, so when the pipeline sees that
the PyTessaract model has not outputted any text, it may choose a
weaker blur than needed. Additionally, both the bounding boxes
given by the dataset (Figure 2) and the bounding boxes found by
YOLO are all upright oriented rectangles. This is not ideal since
slanted or sideways license plates will include areas within the box
that are not part of the actual license plate (Figure 9). This can cause
areas not part of the license plate to be blurred, which hampers
image utility. To address these limitations for slanted license plates,
a better text recognition model and a more accurate license plate
detection model (adjusts bounding box shape to match the shape
of the license plate) may be used or created.



Figure 9: Bounding box of slanted license plate

Finally, we struggled with creating evaluation metrics that were
robust. We ended up using a soft metric where we use another model
to evaluate the correct amount of blur. However, as mentioned
before, this means that the output is also dependant on the ability
and accuracy of these separate models. At the moment, there is no
robust accuracy metric to evaluate the output of the tool.

4.4 Future Work

Currently, the tool’s blurring procedure is not streamlined to the
point that can be released for public use. To reach this point, having
this application running on a server with a working frontend is a
useful extension so anyone can use the tool.

Additionally, creating a better and more robust metric to evaluate
the privacy level of the modified image could engender a more
robust blurring model. Currently, the method of determining blur
level includes a naive PyTessseract text extraction model, which is
usable but could be improved to be more robust in order to better
optimize the utility of the image while maintaining license plate
privacy. A better text extraction model would be an auspicious step
to have a better tool. This extension could potentially give rise to
new blurring methods that can be compared using a universal and
reliable blur level metric.

In terms of data, having a larger dataset can be helpful to elimi-
nate the bi-modal distribution seen in the results section, granting
a more in-depth understanding on what blur is necessary for each
image.

Finally, as mentioned previously, our license plate obfuscation
process can be extended to more applications such as street signs,
home addresses, and many more privacy "breaches" throughout
everyday photography. The tool can be modified to also apply in
these domains by finding the corresponding image datasets and
building a more generalized tool.

5 CONCLUSION

In this paper, we introduced CLOAK, a solution for maintaining the
privacy of drivers by obfuscating vehicle license plates in images.
We successfully developed a tool that can automatically detect the
location of a license plate and hide it, while maintaining maximum
utility of the image. On an image being loaded, our solution uses
a pre-trained YOLOv5 model to automatically detect and locate a
license plate, which is then Gaussian blurred using various kernel
sizes. Our experimental results demonstrate the effectiveness of our
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tool in creating a guarantee of privacy relative to the PyTesseract
model’s capability of reading license plate text, such that the levels
of blur can be dynamically adjusted to ensure privacy without
sacrificing image quality.

CLOAK’s applications extend beyond license plates to safeguard-
ing other sensitive information in images, presenting a potential
solution for privacy protections in various scenarios. As image shar-
ing becomes more prevalent, CLOAK addresses the critical need to
balance privacy and utility, providing a practical tool for users and
organizations alike.
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