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Abstract

This paper investigates emergent relative word
representation in GPT-2, motivated by the chal-
lenges posed by token representations in trans-
formers. Inspired by Neel Nanda’s informal ex-
ploration and the general project of mechanistic
interpretability, this project extends beyond toy
inputs to deal with the challenge of probing on
natural, cohesive sentences. We provide visual-
izations and detailed training statistics on linear
probing to illustrate the abstract representations
of information in GPT-2.

1 Introduction

The transformer architecture has demonstrated re-
markable performance in Natural Language Pro-
cessing (NLP) tasks. A reasonable intuitive under-
standing of why they work so well is that through
layers of self-attention and MLPs (Multi-Layer Per-
ceptrons), they are able to construct and use more
and more abstract representations of the raw under-
lying tokens and corresponding embeddings, which
enables their impressive performance.

However, the token representation used in trans-
formers presents certain challenges. Asking mod-
els to attend to previous words or to look at corre-
sponding words in different sentences can be dif-
ficult, as tokens are often misaligned with words,
and large or infrequent words may be split into
many fragments.

This project, Probing for Emergent Relative Posi-
tional Embeddings in GPT-2, explores the hypoth-
esis that the initial layers of the model focus on
constructing a representation of a token’s position
in the sentence, rather than relying solely on the
positional embedding provided. For example, the
model might develop a representation akin to "This
token is the 3rd word in the sentence," as opposed
to "This token is in position 5," which is directly
given by the positional embedding. This question
is directly inspired by Neel Nanda’s informal ex-
ploration (Nanda, 2023), which demonstrated that

probes appear to learn this feature on toy inputs
(but, in his own words, "take all this with a moun-
tain of salt").

We first recreate Nanda’s results, then extend the
probing of the model’s embeddings to a dataset of
natural sentences. We chose to study GPT-2, as
it is publicly available, small enough to run with
a single GPU, and has been a popular choice for
interpretability studies in the past.

2 Background/Previous Work

The rise of large language models (LLMs) has
brought new attention to the field of Al inter-
pretability, particularly through the lens of mecha-
nistic interpretability. This subfield aims to dissect
and comprehend the intricate, low-level behaviors
of such models. Chris Olah draws an analogy be-
tween this goal of reverse engineering of deep learn-
ing models and decompiling complex software’s
binary code, to reveal the underlying mechanisms
at play (Olah, 2022). Mechanistic interpretability is
young, and often confined to informal explorations
of models published as blog posts (like the post that
inspired this project!), but has seen academic atten-
tion like the notable isolation of a specific circuit
in GPT-2 for indirect object identification (Wang
et al., 2022).

Probing has emerged as a prevalent method for
uncovering the representations learned by various
layers within a model (Belinkov, 2022; Gurnee
et al., 2023; Hewitt and Manning, 2019). For in-
stance, studies involving the toy task of predicting
legal moves in the board game Othello have utilized
probes (both linear and non-linear) to decipher the
complex representations of an entire board state (Li
et al., 2023; Nanda et al., 2023).

This project builds on these efforts by employing
straightforward linear probing on residual stream
activations in GPT-2. By adopting an extremely
simple probing technique, we hope to ensure that
the discovered representations are inherent to the
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model, rather than an artifact constructed by the
probing process. This method is consistent with
the broad goals of mechanistic interpretability: to
construct a meaningful understanding of how neu-
ral networks operate, based on tangible, low-level
observations.

3 Methodology

3.1 Dataset

We used various types of text corpora for our
project. First, in order to replicate Neel Nanda’s
original experiments we utilized a dictionary "Ran-
dom Words" of the 10,000 most common English
words (Price, 2022) for random sequence genera-
tion. We also utilized multiple text corpora with
full coherent sentences:

* "Brown" - Brown Corpus (Voigt, 2024)

* "President"” A corpus of presidential

speeches (Voigt, 2024)

To prepare the data for training our model, we
needed to generate suitable datasets from these
corpora. For our "Random Words" dataset, we used
a fixed prefix appended with random sequences of
10 words from the common English corpus. This
was an easy to construct initial test without nuances
like punctuation. For our full sentence datasets, we
fed the model straightfoward sequences from the
corpora, without modification.

3.2 Tools

The GPT-2 tokenizer frequently splits long or infre-
quent words into multiple tokens, so to eventually
train probes on relative word position we needed
to track each token’s index and associated word
within each sequence. We used the following tools:
spaCy: A widely used open-source Python pack-
age for language processing. Specifically, we used
spaCy’s ’en_core_web_sm’ model, a lightweight
version of the spaCy package which includes a sen-
tence tokenizer (not to be confused with GPT-2’s
tokens, this identifies and splits words from sen-
tences), and part of speech tagger.
TransformerLens: An open source Python
library designed to simplify mechanistic inter-
pretability research for popular transformer models.
Specifically, it allows us to load the publicly avail-
able weights for GPT-2, inference the model on
text samples, and cache the internal activations for
training probes. TransformerLens also contains the
GPT-2 tokenizer, which splits the raw strings into

non:

chunks (such as "tokenizer" -> "token", "izer") and
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Figure 1: Scatterplot showing the correlation between
word and token indices for the full Brown corpus.

maps them to indices so they can be processed by
the transformer model. We wrote a matching algo-
rithm (see Appendix A) to match the GPT-2 tokens
and indices to the words isolated by spaCly.

3.3 Embeddings

Each sequence (either a string of prefix + random
sequence, or a string of multiple coherent sen-
tences) is fed into GPT-2 using TransformerLens,
and we specifically save the residual stream activa-
tions after each layer of the model. GPT-2 Small
has 12 layers, giving 12 possible locations within
the model to extract embeddings. The hidden di-
mension of GPT2-small is 768, so this gives us a
768-dimensional embedding for each token in the
input sequence. Each embedding becomes a train-
ing sample for our probe, with the label being the
word index associated with that token.

3.4 Probes

As mentioned above, we employed the simplest
possible probe: a single linear layer. Our probe
is implemented using PyTorch (Paszke et al.,
2019), and are set up to predict multiple classes,
each corresponding to a different word posi-
tion within the input sequence. This makes the
weights of a probe a single matrix with dimensions
(num_classes, embedding_size).

Training details:

* Trained using cross-entropy loss and the

Adam optimizer

* Learning rate of le-3

* Weight decay of le-3

We did not attempt to tune hyperparameters.
After initial testing with probes on our "Random
Words" dataset, as show in Figure 2, we chose to
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Figure 2: Loss and accuracy curves for linear probe,
trained over 100 epochs. Performance on test set peaks
after roughly 40 epochs.

train probes for a maximum of 40 epochs.

4 Results

4.1 Initial Recreation of Nanda’s Results

Table 1 shows performance by class for a probe
trained on the "Random Words" dataset, which
is a direct recreation of Nanda’s experiment. We
achieve roughly 75% accuracy, which is strong
on a 10-classification task where random guessing
would give 10%. However, there is clear correla-
tion between the token index and word index, and
the model is given a positional embedding with
each token from which the absolute token position
can be inferred. Additionally, these inputs always
have a fixed prefix and do not have punctuation
or coherence between words, meaning the connec-
tion is tenuous between this probe’s results and the
models function while processing typical text.
However, we can still gain some insight into
the model’s overall structure. Figure 3 shows the
accuracy of probes trained on embeddings from
each layer of the model, with accuracy peaking

Class | Precision | Recall | F1-score
0 0.9912 | 09959 | 0.9935
1 0.9620 | 09671 | 0.9646
2 0.9077 | 0.8955 | 0.9016
3 0.8185 | 0.8199 | 0.8192
4 0.7570 | 0.6697 | 0.7107
5 0.6058 | 0.7790 | 0.6815
6 0.6451 0.4498 | 0.5300
7 0.5346 | 0.7044 | 0.6079
8 0.5679 | 0.4098 | 0.4761
9 0.7340 | 0.8009 | 0.7660

Accuracy | 0.7492
Total Samples | 126,209

Table 1: Probe performance on "Random Words" dataset
across classes. Each class label corresponds to word
index. Probe was trained on layer 3 embeddings.
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Figure 3: Probe accuracy per layer on "Random Words"
dataset.

in layers 3 and 4 before gradually falling off at
later layers. Intuitively, it makes sense that a low
level abstraction like word position would appear
in early layers, and be less prevalent in the final
layers immediately before the model’s next token
prediction.

4.2 Training on Coherent Sentences

4.2.1 Preparing Dataset

When inferencing the model with full sentences,
our previous strategy for classification labels be-
comes more complicated. Sentences can vary
widely in length, so our distribution is now strongly
right-skewed (see Figure 4). Additionally, since the
longest sentences in our corpus are over 100 words
long, labeling each exact word index for every to-
ken is unwieldy.

It seems unlikely that the model is attending to
the relative position of the 82nd and 83rd words as
closely as to the 2nd and 3rd words, so we chose
to classify on a percentile basis. We take each indi-
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Figure 5: Distribution of Brown corpus after grouping
into quantiles.

vidual corpus, calculate quantiles for the corpus’s
distribution of word indices, and then group each
into a bucket with a distinct label. This flattens the
distribution of labels (see Figure 5, and allows us
to moderate the number of labels to find the most
natural target for the probe. This still reflects mean-
ingful positional information about each token, so
it still matches with our overall goal.

4.2.2 Baselines

Our baseline is a probe trained on a randomly
initialized model. It gets roughly 10% accuracy,
nearly identical to random guessing, showing that
a linear probe is not a strong enough model for pre-
dicting relative word position training on random
noise. This supports our core assumption that the
GPT-2 model is creating structure from the data in
an interpretable way.

Test Accuracy by Layer (Presidents)
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Figure 6: Probe accuracy per layer on "President”
dataset.

4.2.3 Evaluating probes

Table 1 shows performance across many different
training schemes for the natural sentence datasets.
Training with embeddings from GPT-2 Medium
(which has more layers and a slightly larger hidden
dimension of 1024) gives a slight improvement in
performance. All metrics are from probes trained
on the residual stream after layer 3, based on initial
testing. However, this may not have been optimal.
Figure 6 shows accuracy on President dataset from
probes trained across all layers of GPT-2 Small,
which diverges from the pattern displayed on the
simple "Random Words" dataset. Here, perfor-
mance peaks solidly in the middle layers. This
difference could be attributed to how the model
processes longer, more coherent sequences, or due
to the change in how labels are generated. Perhaps
representing a word’s quantised position rather than
straight word index within a sentence requires more
layers of processing.

4.3 Visualization
4.3.1 Probe Directions

In Figure 7 we can see how distinct the different
prediction directions are. Some notable points:
* Class 2 is nearly opposite of Class 7 and 8
* Class 0 is closer to the Class 9 than it is to
Class 1-3
* The final classes form a square-shaped area of
similarity, which might indicate the model has
trouble differentiating the nuances of word
positions in the latter part of a sentence.
Figure 8, layers in the middle have broadly the
same direction, though it clearly gradually shifts
throughout layers. Doesn’t really show signs of
being a consistent direction throughout the en-
tire model. The first and last layer’s direction is
the most distinct, which makes sense given their



Model Dataset | Samples | Bins | Accuracy | Baseline
GPT-2 Small | President 425k 20 0.3022 0.05
GPT-2 Small Brown 366k 10 0.6276 0.1
GPT-2 Small Brown 366k 5 0.7945 0.2
GPT-2 Small | President 425k 10 0.4484 0.1
GPT-2 Small | President 425k 5 0.6387 0.2

GPT-2 Medium | Brown 366k 10 0.6283 0.1
GPT-2 Medium | Brown 366k 5 0.8025 0.2
GPT-2 Medium | President 425k 10 0.4856 0.1
GPT-2 Medium | President 425k 5 0.7044 0.2

Table 2: Probe performance on full sentence datasets. Various bin sizes for computing labels. Baseline shows
rounded accuracy of a probe trained on embeddings from randomly initialized model.
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Figure 7: Cosine similarities between learned directions
of probe trained on layer 2 residual stream, "President”
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Figure 8: Cosine similarities for the same class, between

probes trained on different layers, "President" dataset

with George R. R. Martin, he told me that
he did not know I was with him in the video
. When I asked him, "Would you rat S
my daughter or my husband or his mother
or "do you want to see anything that is
too dangerous for you to talk about?" I
knew that I was giving him that speech.
But there knew, not
knowing if I was doing the right thing.

I knew that I was doing what I was called
when I was with George R. R. Martin in the
library because I would have it translated
to a better country.

Figure 9: Projection from embedding to Layer 2’s probe
direction O (start of sentence, first few words). Text was
generated by GPT-2

probe’s poor accuracy.

4.3.2 Text Examples

In Figure 9, we can see the result of projecting onto
a single probe direction. Note how the probability
is higher at the beginning of each sentence, but
it isn’t simply responding to each period, like in
"George R. R. Martin".

From there, using a baseline of one of our
best performing models (10 bins, GPT-2-medium,
trained on the President dataset), we can see com-
paring Figures 10 and 11, the model using 10 bins
qualitatively seems to have a better performance
of projecting higher values to words at the start of
sentences. Comparing Figures 10 and 12, we can
see the projection is less consistent in magnitude
for GPT-2-small, and comparing Figures 10 and
13, we notice similar projections, where the Brown
corpus seems to be more precise in it’s projections
but also mistakes numerical digits for beginnings of
sentences, which may be due to the dataset having
less numbers than the President dataset.



5 Discussion

From our probing experiments, both in a simplified
setting with random sequences of words and using
cohesive sentences from popular text corpora, we
see clear evidence of GPT-2 forming emergent rep-
resentations of the relative word position of each
token (considering either absolute index or quan-
tiles). This is a minor feature in the grand scheme
of all of GPT-2’s capabilities, but the ability of lin-
ear probes to localize these representations to the
early and middle layers are revealing of the over-
all structure of how transformers gradually com-
pute and reshuffle abstractions in order to generate
realistic text. We hope this investigation can be
another small piece on the road to a more mech-
anistic understanding, and eventually steering, of
transformers.

Some future potential work:

* Probe for emergent positional representations
at different levels of syntax, like a word’s po-
sition within a paragraph, or a sentence’s po-
sition within a paragraph.

* It seems reasonable that the model, instead
of having an internal linear direction for each
word index or quantile, has a more regression-
based representation of word position. Fram-
ing our probing as a regression task instead of
a classification task could be a useful follow
up.

* Investigate if model can identify a word’s part
of speech in a sentence, or relative position for
specific parts of speech (e.g. "is this token the
2nd name in the sentence?" which could be
useful for the model’s performance on some-
thing like indirect object identification).

* Performing interventional experiments using
the directions learned by probes. As previous
studies have demonstrated (Belinkov, 2022;
Li et al., 2023), interveneing on or ablating
the model’s activations during inference can
be useful in determining whether there is a
causal relationship between a model’s repre-
sentations, or if it is just an artifact of the
probing process.

* Investigating the impact of including or ex-
cluding punctuation from sentences on the
performance of the model, and seeing how
that might effect the tokenization process

Group Contribution

Julian had the initial idea for the project, wrote the
project proposal, and did the initial coding to recre-
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Algorithm 1 Match GPT-2 Tokens to spaCy Word Indices

1: Input: text > Input text to process
2: Qutput: mappings > List of tuples with token, its index, and word index
3: tokens <— GPT2_Tokenize(text)

4: tokenStrings <— ConvertTokensToStrings(tokens)

5: spaCyWords <— spaCy_Tokenize(text)
6
7
8

: Initialize tokenIndex, wordIndex, subWordIndex to O
. Initialize mappings to []
: while tokenIndex < Length(tokenStrings) do

9: token <— tokenStrings[tokenIndex].strip()

10 if not token then > Skip whitespace tokens

11: AddMapping(mappings, token, tokenIndex, -1)

12: Increment tokenIndex

13: continue

14 end if

15: currentWord <— spaCyWords[wordIndex]

16: if token is part of currentWord starting at subWordIndex then

17: AddMapping(mappings, token, tokenIndex, wordIndex)

18: Increment subWordIndex by Length(token)

19: Increment tokenIndex

20: else

21: if NextWordExists(wordIndex, spaCyWords) and token in NextWord(spaCyWords,
wordIndex) then

22: Increment wordIndex

23: Reset subWordIndex to 0

24: else

25: AddMapping(mappings, token, tokenIndex, -1)

26: Increment tokenIndex

27: end if

28: end if

29: end while
30: return mappings

The_ transduction models are based on complex recurrent or convolutional neural networks in an
encoder-decoder configuration. The- performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms
, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these
models to be superior in quality while being more parallelizable and requiring significantly less time to train
. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing
best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model
establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs,

a small fraction of the training costs of the best models from the literature. We show that the Transformer general
izes well to other tasks by applying it successfully to English constituency parsing both with large and limited
training data.

Figure 10: Projections from embedding to Layer 2’s probe direction 0 from a model using GPT-2-medium, 10 bins,
and trained on the President dataset.
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Figure 12: Projections from embedding to Layer 2’s probe direction 0 from a model using GPT-2-small, 10 bins,
and trained on the President dataset.
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Figure 13: Projections from embedding to Layer 2’s probe direction 0 from a model using GPT-2-medium, 10 bins,
and trained on the Brown Corpus.

As IWalked through the park arm in arm with George R. R. Martin, he told me that he did not know I was with him in the video.
As IWalked through thellpark arm inlarm with George R. R. Martin, he told me that he did not know I was with him in the video.
As I walked through thelpark arm inlarm with George R. R.[Martin, he told me that he did not know I was with him in the video.
As I walked through the park arm in arm withliGeorge R. R.JMartin, he told me that he did not k with him in the video.

As I walked through the park arm in arm with

Figure 14: Projection onto each probe direction (5 percentile buckets) on the same text example.
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Figure 15: Projection onto each probe direction (5 percentile buckets) on an input of code (our matching algorithm
in Appendix A).

Figure 16: Projection onto each probe direction (5 percentile buckets) on an input of all spaces.
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Figure 17: This plot is a recreation of Nanda’s key plot in his informal exploration (Nanda, 2023). It illustrates
the absolute distribution of model predictions for word indices against absolute token positions in the prompt,
showcasing varying levels of accuracy and error across different indices and positions.
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